“笔趣屋”最新网址:https://www.5czw.com,请您添加收藏以便访问
当前位置:笔趣屋 > 女生同人 > 中国古代名人传 > 第343章 刘徽

第343章 刘徽(2 / 3)

上一页 章节列表 下一页
好书推荐: 抗战之烽烟万里 神匙迷航 修仙:从一只斗鸡开始 生育值0?毛茸茸老公皆顶级大佬 莫纳德遗迹 迷航方舟 小林修行记 先生又又又又成仙了! 正做加减法,系统早到五十年 身份转换:强者归来【唐赟续】

法与现代线性方程组的“代入消元法”本质一致,极大地简化了计算过程。

此外,刘徽还首次明确了“负数”在方程中的应用规则。

他指出,当方程中出现“不足”或“亏欠”的量时,可用“负”来表示,并用“赤筹”表示正数,“黑筹”表示负数,同时规定了“正负数加减法则”:“同名相除,异名相益,正无入负之,负无入正之”,这一规则与现代数学的正负数加减法则完全一致,比西方最早提出负数概念的印度数学家早约600年。

在几何领域,刘徽提出了着名的“出入相补”原理,即“割补术”——将一个几何图形分割成若干部分,再将这些部分重新拼接成另一个图形,其面积或体积保持不变。这一原理成为他证明各种几何公式的核心工具。

例如,在证明“勾股定理”时,刘徽并未满足于《九章算术》中“勾三股四弦五”的经验性结论,而是通过“弦图”(即一个大正方形内包含四个全等的直角三角形和一个小正方形),利用“出入相补”原理,严格证明了“勾2 + 股2 = 弦2”。

他在注文中写道:“勾股各自乘,并之为弦实,开方除之即弦”,并通过图形割补,清晰地展示了“勾实”“股实”与“弦实”之间的面积关系,使勾股定理的证明具备了坚实的理论基础。

在体积计算方面,刘徽同样运用“出入相补”原理,解决了“阳马”(底面为矩形、一条侧棱垂直于底面的四棱锥)与“鳖臑”(四个面均为直角三角形的三棱锥)的体积问题。

他通过将一个长方体分割成三个全等的阳马,或一个阳马分割成两个全等的鳖臑,证明了“阳马体积 = 1\/3x底面积x高”“鳖臑体积 = 1\/6x底面积x高”,并进一步推导出“任何拟柱体的体积均可通过分割为阳马、鳖臑等基本几何体来计算”,为后来祖暅提出“祖暅原理”(即“幂势既同,则积不容异”)奠定了基础。

除《九章算术注》外,刘徽还着有《海岛算经》一卷(原附于《九章算术注》之后,唐代独立成篇),这部着作是中国古代测量学的集大成之作,专门探讨“可望而不可即”的物体(如海岛、山峰、深井等)的高度、距离测量问题,其核心方法是“重差术”。

“重差术”的本质是利用两次或多次测量所得的“差”,结合相似三角形的性质,推算出未知量。

例如,《海岛算经》开篇第一题“望海岛”:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表参相直。从前表却行一百二十三步,人目着地望岛峰,与表末参合。从后表却行一百二十七步,人目着地望岛峰,亦与表末参合。问岛高及去表各几何?”

刘徽的解法是:首先,设海岛高度为h,前表到海岛的距离为d,两表间距为d,前表却行距离为a1,后表却行距离为a2。

根据相似三角形原理,他推导出公式: h = 3 + \\frac{3xd}{a2 - a1} , d = \\frac{a1xd}{a2 - a1} ,代入题目中的数值(1步=6尺,3丈=30尺=5步),最终计算出岛高为4里55步,前表到海岛的距离为102里150步。

这种方法不仅解决了复杂地形下的测量难题,更将相似三角形的应用从“平面测量”扩展到“立体测量”,其精度与逻辑性远超同时代的西方测量技术。

在西方,类似的“三角测量法”直到16世纪才由荷兰数学家斯台文提出,比刘徽晚了1300余年。

《海岛算经》共收录9个测量问题,涵盖了“望海岛”“望松”“望谷深”“望楼”“望波口”等多种场景,每个问题均给出了详细的解法与推导过程,形成了一套完整的测量理论体系。

这部着作不仅在古代中国被广泛应用于天文观测、水利工程、城市规划等领域,还在唐代传入日本、朝鲜等东亚国家,对东亚数学的发展产生了深远影响。

刘徽的数学成就,不仅在于他解决了一系列具体的数学问题,更在于他构建了中国传统数学的“理论范式”——以逻辑推理为核心,以实际应用为导向,以图形辅助为手段,将零散的算法转化为系统的理论。

这种学术精神,对后世数学家产生了深远的影响。

南北朝时期的祖冲之、祖暅父子,正是在刘徽“割圆术”

温馨提示:亲爱的读者,为了避免丢失和转马,请勿依赖搜索访问,建议你收藏【笔趣屋网】 www.5czw.com。我们将持续为您更新!

请勿开启浏览器阅读模式,可能将导致章节内容缺失及无法阅读下一章。

上一页 章节列表 下一页
新书推荐: 同穿:举国随我开发异世界 大明:我是朱标他舅 如何拯救德意志 大明秦王,从截胡徐妙云开始 苏定方演义 红楼群芳谱 世威大帝 古人看我玩原神 农民将军 中国古代名人传